
Multimedia Adaptation Decisions Modelled as Non-Deterministic Operations*

Fernando López1, Dietmar Jannach2, José M. Martínez1, Christian Timmerer2, Hermann Hell-
wagner2, Narciso García3

1GTI, EPS – Universidad Autónoma de Madrid, {f.lopez,josem.martinez}@uam.es
2 AINF, ITEC – Klagenfurt University, Austria, {firstname.lastname}@uni-klu.ac.at

3GTI, ETSIT – Universidad Politécnica de Madrid, narciso@gti.ssr.upm.es

* Work supported by the European Commission (IST-FP6-027685 – MESH and IST-FP6-038463 – ENTHRONE II), Spanish Government
(TEC2007-65400 - SemanticVideo) and Comunidad de Madrid (S-0505/TIC-0223 - ProMultiDis-CM). This work is also supported by the Minis-
terio de Educación y Ciencia of the Spanish Government through the FPU grant under the name of the first author.

Abstract

This paper describes how a multimedia adaptation
framework can automatically decide the sequence of
operations to be executed in order to adapt an MPEG-
21 Digital Item to the MPEG-21 description of the
usage environment in which it will be consumed. The
main innovation of this work with respect to previous
multimedia adaptation decision models is that in the
proposed approach decisions can be made without
knowing the exact behaviour of the operations that are
going to be executed.

1. Introduction and state of the art

Multimedia adaptation decision taking allows the
automatic configuration of an adaptation engine in
order to produce content that can be directly consumed
in a given usage environment. KoMMa [1] and CAIN
[2] are both multimedia adaptation frameworks capable
of performing this sort of automatic self-configuration.
Additionally, in both engines the inputs and outputs are
compliant to the MPEG-21 standard [3], a framework
that greatly simplifies the integration within large-scale
multimedia systems that are aware of those open inter-
faces.

In general, multimedia automatic decision-taking
systems like [1] and [2] are based on the assumption
that the behaviour of the operations to execute is well
known before taking decisions about which operations
to choose and in which order to execute them. In our
work, however, we are proposing a multimedia adapta-
tion engine where third parties may integrate adapta-
tion operations, and as a consequence we cannot al-
ways foresee the exact behaviour and, as a result, the
output of these operations.

Artificial Intelligence (AI) planning techniques [4]
enable an intelligent agent to accomplish automatic

decisions before acting. States are passive entities that
collect the relevant aspects of the problem under con-
sideration, whereas actions are active entities that
transform the world from one state to another, e.g., by
changing one or more features of the world’s state
[1][4].

Traditional computer science has used the notion of
an operation (i.e., a procedure, function, or subroutine)
to refer to a portion of code that performs a specific
task. In computer science the actions that can be exe-
cuted may be represented as operations where parame-
ters are not only used to designate the input state (as in
the case of traditional planning actions) but also in-
clude the capacity to choose the output that we desire
to obtain after executing the operation.

2. Non-deterministic operations

When the above convention to represent operations is
used, we consider it to be very useful to discriminate
between state parameters that reflect the input state of
the world, and target parameters that signal the desired
output state. For example, let us suppose that the op-
eration resize(“movie.mpg”,480,320) modifies the size
of “movie.mpg” to frame size 480x320 pixels. In this
case, “movie.mpg” is a state parameter and 480, 320
are target parameters that designate the frame size of
the desired output state movie in pixels.
 Furthermore, within the standard theory of computa-
tion, deterministic algorithms are algorithms where the
output state can be precisely determined from the input
state. Conversely, non-deterministic algorithms are
algorithms with one or more internal choices where
several continuations are possible, without a specifica-
tion of which one will be taken, but where it is guaran-
teed that all the paths always arrive at a valid solution.
Note that the standard theory of computation's non-
deterministic algorithms is a different concept to prob-

ability theory's stochastic process whose behaviour is
non-deterministic. Automatic decision systems have
implicitly considered operations as deterministic op-
erations. In this work, however, we propose to model
multimedia conversion operations as non-deterministic
operations, i.e., where – as a result – the output state
cannot be determined from observing the input state
parameters and the target parameters. The motivation
behind this proposal is that third party multimedia con-
version may accomplish several continuations without
a precise specification of which one will be taken.

In the literature, the term state has been used to refer
to both the predictable result that one knows will be
obtained when a decision is taken about the operations
(without executing them) and the result that will be
obtained after executing an operation. This is due to the
assumption that there exist only deterministic opera-
tions, and under that condition both results have the
same values. However, the existence of non-
deterministic operations makes necessary to discrimi-
nate between potential states and realized states. Spe-
cifically, we propose to use the term potential state to
refer to the feasible values of the state that a non-
deterministic operation may produce and we propose to
use the term realized state to refer to the resulting state
obtained after executing a non-deterministic operation.
Hereafter, we will use the term decision phase to refer
to an algorithm that, given a potential input state and
an operation, provides the potential output state. Con-
versely, we will use the term execution phase to refer
to an algorithm that, given a realized input state (that
represents the real world), executes an operation with
the realized input state as parameter and produces an-
other realized output state that corresponds to the result
of the execution. Also, according to this taxonomy, it is
important to note that realized states correspond to the
subset of the potential states that are achieved when the
operation is actually executed. In the simple case of
deterministic operations, potential state values are en-
tirely defined and both states (potential states and real-
ized states) are the same. We propose to use the term
unique potential state to refer to this last class of states.
However, the introduction of non-deterministic opera-
tions requires us to introduce what we refer to as mul-
tiple potential states, i.e., states that cannot be totally
anticipated because they are the output of a non-
deterministic operation.

Traditional preconditions, postconditions, and in-
variants have been represented with first order predi-
cates that have shown to be a successful way to model
the states. In this work, we are going to evaluate an
alternative representation, i.e., we propose to represent
unique potential states and realized states by a set of
variables, where each variable is a label with a unique
associated value (e.g., width = 320). Note that variables

are suitable to represent the input and output of deter-
ministic operations, because given an input state and a
deterministic operation it is always possible to deter-
mine the values of the variables of the output state.
However, as a non-deterministic operation must pro-
duce a valid solution, we can presume that it is possi-
ble to represent the postconditions using ranges or a set
of values. This observation motivates our proposal to
represent multiple potential states by a set of proper-
ties, where each property is a label along with a set of
associated potential values. In this way, properties have
the form of key-values pairs where the key is a label
and the values correspond to a possibly empty set of
homogeneous elements (e.g., width = {320, 640, 800,
1024} or width = [100..5000]).

Similar to classical planners that search for a se-
quence of actions that lead from an initial state to a
goal state, we propose the use of a non-deterministic
planner, i.e., an algorithm capable of finding a se-
quence of non-deterministic operations (or simply re-
ferred to as sequence of operations) that leads from a
potential initial state to a potential goal state. Due to
the fact that we have to cope with non-deterministic
operations, there might exist several sequences of op-
erations that lead to the goal state. Thus, this algorithm
must be capable of finding both the set of feasible se-
quences of operations and the target parameter values
that must be provided to each non-deterministic opera-
tion in order to follow a specific sequence of opera-
tions. Note that the non-deterministic planner that we
propose to address the multimedia adaptation decision
problem does not correspond to classical conditional
planning [4], because conditional planning introduces
the assumption of contingency decisions as the plan
execution progresses and usually removes the exis-
tence of linearly ordered sequences of actions. On the
other hand, the non-deterministic planner that we pro-
pose to use corresponds to a sort of planning under
uncertainty [4]. In particular, “planning under uncer-
tainty” often deals with states that are not totally ob-
servable. However, in the proposed non-deterministic
planner the states are always totally observable. Be-
sides, planning under uncertainty usually associates
probabilities to the outcomes of the actions (e.g., the
probability of an error during its execution). In our
proposed model, operations correspond to non-
deterministic algorithms and we assume that they al-
ways lead to valid solutions and, thus, the associated
probabilities are totally irrelevant. The main concepts
of this algorithm are provided in the next section.

3. Multimedia conversions modelled as
non-deterministic operations

Within CAIN, a CAT (Component Adaptation Tool) is
a pluggable software module capable of performing
several conversions to adapt (multi-)media resources,
which are represented as Component elements of an
MPEG-21 DI (Digital Item) [3]. Additionally, the con-
version capabilities of a CAT are expressed using the
CAT Capabilities [5]. The DM (Decision Module) is
the module in charge of choosing the sequence of con-
versions which adapts an MPEG-21 Component [3] to
a given MPEG-21 UED (Usage Environment Descrip-
tion) [3]. Subsequently, the EM (Execution Module)
will execute the chosen sequence of conversions.
Representation issues. Figure 1 shows the elements
that take part in a non-deterministic multimedia con-
version.

operation

Target parameters

Potential
input state

Potential
output statePreconditions Postconditions

Figure 1: Representation of a non-deterministic conversion.

Traditional planning algorithms make use of first order
logic predicates to represent states and actions. We
have replaced predicates by a set of properties (e.g.,
media_format, width, height). In particular, the values
of the properties of the potential states result from re-
solving a set of XPath1 expressions over the MPEG-21
DI that conveys the Component to adapt. The potential
goal state is obtained from resolving another set of
XPath expressions over the MPEG-21 UED (terminal,
network, and user preferences). The values of the prop-
erties of the preconditions and postconditions of the
conversions result from resolving a set of XPath ex-
pressions over the CAT Capabilities. The target pa-
rameters are also represented by properties. However,
the non-deterministic planner dynamically calculates
the values of these properties instead of extracting
those values from the existing descriptions.
The non-deterministic planner. As shown in Figure
2, the goal of the non-deterministic planner – imple-
mented within the DM – is to search for a set of feasi-
ble sequences of conversions that adapt an MPEG-21
Component according to the requirements described in
the MPEG-21 UED. In our proposal, there must exist
only one UED, and as a consequence, only one poten-
tial goal state. There might however exist several varia-
tions of the Component, i.e., several potential initial

1 http://www.w3.org/TR/xpath

states, which is impossible in [1] and [2]. In particular,
the initial states are unique potential states, because the
value of each property is unique, whereas the goal state
is a (possibly multiple-valued) potential state since the
UED may accept several values in each property (e.g.,
the terminal accepts several screen sizes). We could
think about modelling the initial Component and its
variations as one multiple potential state that encom-
passes all the variations. In practice, however, this is
not always possible because different variations (repre-
sented as Component elements) may have different
media resources and different Resource element de-
scriptions that correspond with different properties
(e.g., different coding formats, bitrates, etc.). For these
reasons, we decided to use a single potential state for
each variation.

UED

Multimedia VariationMedia

Non-deterministic
conversion

Non-deterministic
state

Figure 2: Conceptual view of the non-deterministic planner.

In this context, a tree of conversions (ellipses in Figure
2) represents the set of feasible sequences of conver-
sions that we can execute to adapt the media to the
UED (i.e., root of the tree representing the goal state).
In summary, the algorithm that searches for a non-
deterministic plan is similar to an algorithm that
searches for a deterministic plan. The main difference
is that potential states are not uniquely defined but may
include multiple values2.
Semantics of the conversion descriptions. We pro-
pose the following semantics for the preconditions,
postconditions, and invariants of a conversion:
• When a property appears in a precondition of a

conversion, this configuration means that the
conversion requires this property in the input state.
Specifically, the input state property must be a
subset of the precondition’s property values.

• When a property appears in a postcondition of a
conversion, this situation must be interpreted in the
sense that the conversion produces the property.
Note that the conversion may create the property (if

2 Due to space constraints, use cases and further details of this algo-
rithm have been published at the following URL http://www-
gti.ii.uam.es/publications/mad_ndo/

it does not exist in the input state) or modifies the
property (if it exists in the input state).

Dealing with incompleteness. It is important to note
that there may exist a large number of properties.
Therefore, it does not seem reasonable to supply all
these properties in every adaptation problem. The CAT
implementer may for instance not wish to provide the
value of all these properties. On the other hand, the DI
and usage environment may arrive at the adaptation
engine without values for all these properties. With this
observation in mind, we designed a solution capable of
dealing with the semantics of incomplete descriptors,
which was implemented as follows:
• When an input state does have a property that

appears in the preconditions of a conversion, the
conversion cannot receive the media because the
conversion requests a property that is unknown
(e.g., when a conversion requests as precondition
greyscale images but the input image colour features
are not annotated).

To deal with incomplete conversion descriptions, we
designed the following solution:
• When a property does not appear in the

preconditions of a conversion, this configuration
must be interpreted in a sense that – with regard to
that property – every value is acceptable.

• When a property appears neither in the
preconditions nor in the postconditions of a
conversion, this situation must be interpreted in a
way that the conversion preserves the value of this
property, i.e., the output state inherits the property
of the input state without changes.

• When a property appears in the preconditions of the
conversion, but does appear neither in the
postconditions nor in the invariants of a conversion,
this situation must be interpreted in a way that the
conversion neglects the value of this output property
and – as a consequence – we cannot make any
assumption about the value of this property in the
output state. Note that “neglects” must not be
interpreted in the sense that the CAT necessarily
“loses” this property, but in the sense that the CAT
says nothing about what is going to happen with this
property. If for example a conversion declares the
maximum frame rate that it accepts, but does not
declare the maximum frame rate that it produces,
this situation can arise based on the fact that the
media resource produced by the conversion does not
have a frame rate at all (e.g., it is an audio resource),
or due to the fact that – although the conversion
produces video – it does not specify the output
frame rate.

Note that the preserves solution forces the planner to
assume that whenever a property does not appear in the
conversion description, the property is not modified by

the conversion. Therefore, the CAT must avoid
modifying those properties. Note that this is a risky
assumption as the CAT implementer is assumed to be
careful and precise in his/her design. The other option
would be to force the CAT implementer to annotate all
the properties that the conversion does not modify
which would however become tedious for the CAT
implementer. Alternatively, the algorithm that searches
for the plan would have to discard all the conversions
not properly annotated.

4. Conclusions

In this paper, we demonstrated the convenience of rep-
resenting multimedia conversions as non-deterministic
operations (in contrast to previous multimedia adapta-
tion decision systems [1][2]) and we developed a
method to implement a multimedia adaptation engine
that automatically decides on the adaptation to perform
in order to adapt an MPEG-21 DI to the MPEG-21
UED. Specifically, we argue that this method allows
for the integration of third party software modules
whose behaviour cannot be completely known. Al-
though the method has only been evaluated with a still
small number of multimedia adaptation scenarios, we
claim that non-deterministic operations can be easily
extended to other sorts of decision-taking problems.

In addition our approach is capable of dealing with
absent properties, which we perceive as very useful in
practical environments. If interpreted with the pro-
posed semantics (and in conjunction with multi-valued
properties), the non-deterministic planner that we pro-
pose allows searching in a set of potential states which
are only partially determined and which thus signifi-
cantly reduces the number of states that must be evalu-
ated.

5. References

[1] D. Jannach, K. Leopold, C. Timmerer, H. Hellwagner,

“A Knowledge-Based Framework for Multimedia Adap-
tation”, Applied Intelligence, 24(2):109-125, 2006.

[2] J.M. Martínez, V. Valdés, J. Bescós, L. Herranz, “Intro-
ducing CAIN: A metadata-driven content adaptation
manager integrating heterogeneous content adaptation
tools”, Proc. of WIAMIS’2005, Montreux, CH, 2005.

[3] F. Pereira, J.R. Smith, A Vetro (eds.), “Special Section
on MPEG-21”, IEEE Trans. on Multimedia, 7(3), 2005.

[4] S. Russell, P. Norvig. Artificial Intelligence: A modern
approach, Prentice Hall, 2003.

[5] V. Valdés, J.M. Martínez, “Content Adaptation Capabili-
ties Description Tool for Supporting Extensibility in the
CAIN Framework”, LNCS 4105, Springer Verlag, 2006.

